منابع مشابه
An intersection theorem for weighted sets
A weight function ! : 2 → R¿0 from the set of all subsets of [n]={1; : : : ; n} to the nonnegative real numbers is called shift-monotone in {m+1; : : : ; n} if !({a1; : : : ; aj})¿!({b1; : : : ; bj}) holds for all {a1; : : : ; aj}; {b1; : : : ; bj}⊆ [n] with ai6bi; i = 1; : : : ; j, and if !(A)¿!(B) holds for all A; B⊆ [n] with A⊆B and B\A⊆{m + 1; : : : ; n}. A family F⊆ 2 is called intersectin...
متن کاملAn intersection theorem for systems of sets
Erdos and Rado defined a A-system, as a family in which every two members have the same intersection. Here we obtain a new upper bound on the maximum cardinality q ( n , q ) of an n-uniform family not containing any A-system of cardinality q. Namely, we prove that, for any a > 1 and q , there exists C = C(a, q ) such that, for any n ,
متن کاملAn intersection theorem for four sets
Fix integers n, r ≥ 4 and let F denote a family of r-sets of an n-element set. Suppose that for every four distinct A,B,C,D ∈ F with |A∪B ∪C ∪D| ≤ 2r, we have A∩B ∩C ∩D 6= ∅. We prove that for n sufficiently large, |F| ≤ ( n−1 r−1 ) , with equality only if ⋂ F∈F F 6= ∅. This is closely related to a problem of Katona and a result of Frankl and Füredi [10], who proved a similar statement for thre...
متن کاملThe weighted complete intersection theorem
The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of a k-uniform t-intersecting family on n points, and describes all optimal families for t ≥ 2. We extend this theorem to the weighted setting, in which we consider unconstrained families. The goal in this setting is to maximize the μp measure of the family, where the measure μp is given by μp(A)...
متن کاملAn intersection theorem for systems of finite sets
For nonnegative reals ω, ψ and natural t ≤ k ≤ (n + t − 1)/2, the maximum of ω A ∩ [n] k + ψ A ∩ [n] n + t − 1 − k among all t-intersecting set systems A ⊆ 2[n] is determined. © 2015 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2001
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(00)00267-3